Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer HtrI control photochemistry and function of sensory rhodopsin I.

نویسندگان

  • K H Jung
  • J L Spudich
چکیده

Neutral residue replacements were made of 21 acidic and basic residues within the N-terminal half of the Halobacterium salinarium signal transducer HtrI [the halobacterial transducer for sensory rhodopsin I (SRI)] by site-specific mutagenesis. The replacements are all within the region of HtrI that we previously concluded from deletion analysis to contain sites of interaction with the phototaxis receptor SRI. Immunoblotting shows plasmid expression of the htrI-sopI operon containing the mutations produces SRI and mutant HtrI in cells at near wild-type levels. Six of the HtrI mutations perturb photochemical kinetics of SRI and one reverses the phototaxis response. Substitution with neutral amino acids of Asp-86, Glu-87, and Glu-108 accelerate, and of Arg-70, Arg-84, and Arg-99 retard, the SRI photocycle. Opposite effects on photocycle rate cancel in double mutants containing one replaced acidic and one replaced basic residue. Laser flash spectroscopy shows the kinetic perturbations are due to alteration of the rate of reprotonation of the retinylidene Schiff base. All of these mutations permit normal attractant and repellent signaling. On the other hand, the substitution of Glu-56 with the isosteric glutamine converts the normally attractant effect of orange light to a repellent signal in vivo at neutral pH (inverted signaling). Low pH corrects the inversion due to Glu-56 -> Gln and the apparent pK of the inversion is increased when arginine is substituted at position 56. The results indicate that the cytoplasmic end of transmembrane helix-2 and the initial part of the cytoplasmic domain contain interaction sites with SRI. To explain these and previous results, we propose a model in which (i) the HtrI region identified here forms part of an electrostatic bonding network that extends through the SRI protein and includes its photoactive site; (ii) alteration of this network by photoisomerization-induced Schiff base deprotonation and reprotonation shifts HtrI between attractant and repellent conformations; and (iii) HtrI mutations and extracellular pH alter the equilibrium ratios of these conformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The methyl-accepting transducer protein HtrI is functionally associated with the photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium.

We have investigated the functional relationship between two proteins involved in the photosensory system of the archaeon Halobacterium salinarium: the photoreceptor sensory rhodopsin I (SRI) and the halobacterial transducer rhodopsin I (HtrI), which has been proposed to be the putative signal transducer of SRI, by genomic DNA analysis of two independent SRI negative mutants, Pho81 and D1. Sout...

متن کامل

Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I.

A methylated membrane protein of 97 kDa was suggested on the basis of mutant analysis to transduce signals from the phototaxis receptor sensory rhodopsin I to the flagellar motor in Halobacterium halobium. Here we report isolation of the proposed transducer protein, cloning of its gene based on partial protein sequences, the complete gene sequence, and analysis of the encoded primary structure....

متن کامل

Identification of distinct domains for signaling and receptor interaction of the sensory rhodopsin I transducer, HtrI.

The phototaxis-deficient mutant of Halobacterium salinarium, Pho81, lacks both sensory rhodopsin I (SR-I) and its putative transducer protein HtrI, according to immunoblotting and spectroscopic criteria. From restriction analysis and selected DNA sequencing, we have determined that the SR-I- HtrI- phenotype results from an insertion of a 520-bp transposable element, ISH2, into the coding region...

متن کامل

Phototactic and Chemotactic Signal Transduction by Transmembrane Receptors and Transducers in Microorganisms

Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and ...

متن کامل

Different dark conformations function in color-sensitive photosignaling by the sensory rhodopsin I-HtrI complex.

The haloarchaeal phototaxis receptor sensory rhodopsin I (SRI) in complex with its transducer HtrI delivers an attractant signal from excitation with an orange photon and a repellent signal from a second near-UV photon excitation. Using a proteoliposome system with purified SRI in complex with its transducer HtrI, we identified by site-directed fluorescence labeling a site (Ser(155)) on SRI tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 13  شماره 

صفحات  -

تاریخ انتشار 1996